Integrable Theory of the Perturbation Equation

نویسنده

  • Wen-Xiu Ma
چکیده

An integrable theory is developed for the perturbation equations engendered from small disturbances of solutions. It includes various integrable properties of the perturbation equations: hereditary recursion operators, master symmetries, linear representations (Lax and zero curvature representations) and Hamiltonian structures etc. and provides us a method to generate hereditary operators, Hamiltonian operators and symplectic operators starting from the known ones. The resulting perturbation equations give rise to a sort of integrable coupling of soliton equations. Two examples (MKdV hierarchy and KP equation) are carefully carried out.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A modified homotopy perturbation method to periodic solution of a coupled integrable dispersionless equation

In this paper, a reliable approach is introduced to approximate periodic solutions of a system of coupled integrable dispersionless. The system is firstly, transformed into an ordinary differential equation by wave transformation. The solution of ODE is obtained by the homotopy perturbation method. To show the periodic behavior of the solution, a modification based on the Laplace transforms and...

متن کامل

Solitons for nearly integrable bright spinor Bose-Einstein condensate

‎Using the explicit forms of eigenstates for linearized operator related to a matrix version of Nonlinear Schrödinger equation‎, ‎soliton perturbation theory is developed for the $F=1$ bright spinor Bose-Einstein condensates‎. ‎A small disturbance of the integrability condition can be considered as a small correction to the integrable equation‎. ‎By choosing appropriate perturbation‎, ‎the soli...

متن کامل

Complete eigenfunctions of linearized integrable equations expanded around a soliton solution

Complete eigenfunctions for an integrable equation linearized around a soliton solution are the key to the development of a direct soliton perturbation theory. In this article, we explicitly construct such eigenfunctions for a large class of integrable equations including the KdV, NLS and mKdV hierarchies. We establish the striking result that the linearization operators of all equations in the...

متن کامل

Analytic Equation of State for the Square-well Plus Sutherland Fluid from Perturbation Theory

Analytic expressions were derived for the compressibility factor and residual internal energy of the square-well plus Sutherland fluid. In this derivation, we used the second order Barker-Henderson perturbation theory based on the macroscopic compressibility approximation together with an analytical expression for radial distribution function of the reference hard sphere fluid. These properties...

متن کامل

Integrable Theory of the Perturbation Equations

An integrable theory is developed for the perturbation equations engendered from small disturbances of solutions. It includes various integrable properties of the perturbation equations, such as hereditary recursion operators, master symmetries, linear representations (Lax and zero curvature representations) and Hamiltonian structures, and provides us with a method of generating hereditary oper...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1996